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A front tracking method is presented for simulations of dendritic growth of pure
substances in the presence of flow. The liquid–solid interface is explicitly tracked
and the latent heat released during solidification is calculated using the normal tem-
perature gradient near the interface. A projection method is used to solve the Navier–
Stokes equations. The no-slip condition on the interface is enforced by setting the ve-
locities in the solid phase to zero. The method is validated through a comparison with
an exact solution for a Stefan problem, a grid refinement test, and a comparison with
a solution obtained by a boundary integral method. Three sets of two-dimensional
simulations are presented: a comparison with the simulations of Beckermann et al.
(J. Comput. Phys. 154, 468, 1999); a study of the effect of different flow velocities;
and a study of the effect of the Prandtl number on the growth of a group of dendrites
growing together. The simulations show that on the upstream side the dendrite tip
velocity is increased due to the increase in the temperature gradient and the formation
of side branches is promoted. The flow has the opposite effect on the downstream side.
The results are in good qualitative agreement withpublishedexperimental results,even
though only the two-dimensional aspects are examined here. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

The formation of microstructures during solidification plays a major role in determining
the properties of nearly all man-made metal products. Dendritic microstructures result from
undercooling of the melt and are particularly common in binary alloys, where variable solute
concentration can lead to localized constitutional undercooling. However, undercooling of
a pure material can also lead to dendritic microstructure. Experimental results show that
melt flow can have a significant impact on microstructure formation (Glicksman and Huang
[1]) and in this paper we develop a numerical method for the simulation of two-dimensional
dendrites in the presence of flow. Only pure materials are considered.
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Analytical solutions for dendritic growth are limited to very simple situations and numer-
ical simulations are playing an increasing role in studies of dendrites. Early computations
of the large-amplitude evolution include the boundary integral method of Strain [2], the
level set simulations of Sethain and Strain [3], and the phase-field simulations of Wheeler
et al. [4]. A variational algorithm was used by Almgren [5], and front tracking simulations
were presented by Juric and Tryggvason [6]. Simulations of the growth of two-dimensional
dendrites in a pure metal, in the absence of flow, have now become relatively common. A
few three-dimensional computations have also been presented in the literature, including
phase-field simulations by Kobayashi [7] and Karma and Rappel [8], finite element sim-
ulations by Schmidt [9], and a combined phase-field/Monte Carlo method by Plapp and
Karma [10].

In the simulations listed above, the melt is assumed to be stationary. Phase-field methods
have been extended to simulate the growth of two-dimensional dendrites with melt flow by
Tonhardt and Amberg [11] and Beckermann et al. [12]. Tonhardt and Amberg studied the
effect of shear flow on dendritic growth and modeled the solid as a fluid that was 100 times
more viscous than the melt. Beckermann et al. examined the growth of a single dendrite
in a uniform flow and held the solid in place by a force field added to the momentum
equations. Finite element simulations were presented by Bansch and Schmidt [13], who
modeled the solid and the fluid domain using separate grids and explicitly enforced the
no-slip boundary condition at the interface. Juric [14] and Shin and Juric [15] presented
front tracking simulations of the effect of shear flow on dendritic growth. They used an
iterative scheme to calculate the heat source and advance the front and modeled the solid
as a fluid with a viscosity that was 100 times that of the liquid. Here we develop a front
tracking method to simulate the effect of convection on dendritic growth.

Simulations of dendritic growth with fluid flow require the incorporation of solid bound-
aries into the solution of the Navier–Stokes equations. Although the most accurate results are
generally obtained when it is possible to align the grid to the interface by using a body-fitted
grid, near a half century of CFD has shown that it is very hard to beat rectangular-structured
grids in terms of simplicity and efficiency. When such grids are used, curved boundaries
are not aligned with grid lines. One of the first papers to deal explicitly with how to include
curve boundaries on rectangular grids is Viecelli [16], who simply approximated curved
boundaries by the closest cell edges and applied a pressure to the boundary so that the normal
velocity component was eliminated. More recently, Goldstein et al. [17] used a regularized
singular force to hold the boundary in place. The force is added to the momentum equations
and the strength of the force is adjusted iteratively. Saiki and Biringen [18] proposed an
improved scheme, where the forces are predicted from the history of the motion, using con-
trol theory. Recent papers on the inclusion of curved boundaries on rectangular-structured
grids include those of Lai and Peskin [19], Beckermann et al. [12], and Fadlun et al. [20].
Lai and Peskin pin the boundaries in place using linear springs, allowing small displace-
ment, whereas Beckermann et al. compute the forces from the phase-field variable. Fadlun
et al. pointed out that the forces can be found directly, thus reducing the computational
effort considerably. In the papers discussed above, the effect of the immersed boundary
is approximated by a distribution of forces on the fixed grid. This results in a finite thick-
ness of the boundary, which must be smaller than any resolved length scale. To eliminate
this smoothing, Ye et al. [21] represented the immersed boundary by a series of linear seg-
ments forming trapezoidal-shaped control volumes along the interface. Udaykumar et al.
[22] extended the method of Ye et al. to allow for the motion of the immersed boundaries.
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In the next section we present the mathematical formulation of the problem and the
relevant nondimensional numbers. The implementation of the method is then described.
The validation section includes a comparison with an exact solution for a Stefan problem,
a grid refinement test, and a comparison with a solution obtained by a boundary integral
method [23]. After validating the method, we present three sets of simulations in the results
section: a comparison with the simulation of Beckermann et al.; a study of the effect of
different flow velocities; and a study of the effect of the Prandtl number on the growing of a
group of dendrites growing together. The last section contains a few concluding comments.

2. FORMULATION

The problem setup is sketched in Fig. 1. Undercooled liquid enters through the left
boundary of a rectangular domain and flows past a dendrite in the center. As the liquid
solidifies and the dendrite grows, the geometry of the solid/liquid boundary changes. The
whole domain is resolved by a single fixed grid and one set of equations is used for both
the liquid and the solid. The phase boundary is treated as an imbedded interface by adding
the appropriate source terms as delta functions to the conservation laws. The temperature
is found by solving the energy equation

∂ρcpT

∂t
+ ∇ · (ρcpT u) = ∇ · k∇T +

∫
F

q̇δ(x − xf) da, (1)

where we have assumed that the fluid is incompressible and that viscous heating can be
neglected. u is the fluid velocity (equal to zero in the solid), ρ and cp are the density and
heat capacity, respectively, k is the thermal conductivity, and xf is the front location. The
integral term is the heat liberated during solidification and the source strength q̇ is related

FIG. 1. The initial setup used in most of the simulations presented in this paper. A dendrite seed is located at the
center of the domain and uniform undercooled liquid enters through the left boundary with a velocity determined
by the Peclet number. Weak conditions are imposed on the outlet flow and periodic boundary conditions are used
for the upper and lower boundaries.
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to the normal velocity of the phase boundary Vn and the latent heat L by

q̇ = ρLVn. (2)

The motion of the phase boundary is found by integrating

dxf

dt
= Vnn, (3)

where n is the normal vector to the phase boundary. The heat source is determined in such
a way that the interface temperature satisfies the Gibbs–Thompson relation

Tf = Tm

(
1 − γ

ρL
κ

)
− Vn

η
. (4)

Here, γ is the surface tension, η is the kinetic mobility, and κ is the curvature. The surface
tension and the kinetic mobility are generally anisotropic and we use for the anisotropy the
expression (see, for example, [11, 12, 24])

γ = γo(1 − As cos(m(θ − θo)),
(5)1

η
= 1

ηo
(1 − Ak cos(m(θ − θo)).

Here, As and Ak are the anisotropy of the surface tension and the inverse of the kinetic
mobility, respectively; θ is the angle of the normal to the interface; θo is the angle of the
symmetry axis with respect to the x axis; and m determines the number of axes of symmetry
for the dendrite. In the simulations presented in this paper we use m = 4 and θo = 0◦ unless
otherwise stated. This results in a dendrite with four axes of symmetry aligned with the x
and the y axis.

The fluid motion is determined by the Navier–Stokes equations

∂uliquid

∂t
+ ∇ · uliquiduliquid = −∇ p + ν∇2uliquid (6)

and the velocity in the solid is zero,

usolid = 0. (7)

Here, ν is the kinematic viscosity and p is the pressure. The fluid is assumed to be incom-
pressible and the density of the solid and the liquid are assumed to be the same. Thermal
convection due to changes in volume with temperature is therefore absent. Since the gov-
erning equations are solved on a single grid, we define a velocity field everywhere in the
domain by

u = φ uliquid. (8)

φ(x, y) is an indicator function that is given by

φ =
{

0 in the solid
1 in the liquid

(9)
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and varies smoothly between zero and one in the interface region. The mass conservation
equation for the whole domain reduces to

∇ · u = 0. (10)

The thermal conductivity and the specific heat of each phase are assumed to be constant in
each phase.

Before describing the algorithm used to solve the governing equations, it is useful to
write down the governing nondimensional numbers. By defining a reference temperature
T̃ = L

cp,solid
, a capillary length scale do = Tmγocp,solid

ρL2 , and a time scale τ = d2
o (

ρcp,solid

ksolid
), it is

possible to show that for the solidification of a pure material in the absence of flow, there
is only one nondimensional number if the material properties of the solid and the melt are
the same and if surface tension anisotropy and kinetic effects are neglected. This number is
usually taken to be the nondimensional undercooling St = cp,solid�T

L , or the Stefan number.
Notice that the surface tension and the thermal conductivity do not appear explicitly in this
group. These variables simply set the length and time scale of the evolution, but do not
otherwise affect the results. In the general case, it is also necessary to specify the ratios
of the material properties, the anisotropy of the surface tension and kinetic mobility, and
the nondimensional kinetic mobility, i.e., kliquid/ksolid, cp,liquid/cp,solid, As, Ak, and ksolid

ηo Ldo
.

When fluid flow is added, the flow Peclet number and the Prandtl number must also be
specified. If the capillary length do is used in the definition of the flow Peclet number, those
are

Pef = ksolidUdo

cp,solid
and Pr = ksolid

cp,sloidµ
.

3. NUMERICAL IMPLEMENTATION

The energy equation and the momentum equation are solved on a fixed grid that covers
both the liquid and the solid region. The phase boundary is represented by moving marker
points, connected to form a one-dimensional front that lies on the two-dimensional sta-
tionary mesh. The front is used to advect the discontinuous material property fields and to
calculate the heat source. The energy equation and the momentum equations are discretized
using a conservative, second-order, centered difference scheme for the spatial variables
and an explicit second-order predictor–corrector time integration scheme. For details of
the discretization, see [25]. A uniform inflow with temperature equal to the undercooling
temperature is specified on the left boundary of the computational domain, the top and
bottom of the domain are periodic, and the fluid is allowed to flow freely out through
the right boundary by using Neumann boundary conditions for both the velocity and the
temperature.

To maintain stability the time step is bounded by four criteria: from the heat equation by
�t ≤ h2/4/(k/ρcp), from the Navier–Stokes equation by �t ≤ 4ν/U 2 and �t ≤ h2/(4ν),
and from constraining the front from moving no more than a fraction of the grid spacing in
each time step by �t ≤ h/(4V ). The most restrictive conditions are given by the first and
the third criterion.

To find the heat source and thus the velocity of the phase boundary or the front, we
integrate the energy equation across the phase boundary. The result is that the heat released
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by the motion of the front must be balanced by heat conduction away from the front:

q̇ = ksolid
∂T

∂n

)
solid

− kliquid
∂T

∂n

)
liquid

. (11)

To estimate the temperature gradients on either side of the front, we draw the normal to
the front and find points at ω∗h away from the front,

x± = x1 ± ωh(�y)/�s,
(12)

y± = y1 ± ωh(−�x)/�s,

where the plus (+) sign applies to the right hand side, i.e., the liquid side, and the minus
(−) sign applies to the left hand side, i.e., the solid side. Here h is the grid spacing, and ω

is an adjustable parameter. ω = 1.2 was found to give the highest accuracy, as discussed in
the validation section. Here,

�x = x2 − x0,

�y = y2 − y0,

�s =
√

(x2 − x0)2 + (y2 − y0)2

(13)

(see Fig. 2 for the notation used). The temperature at (x±, y±) is found from the grid
temperature using an area-weighing interpolation function and the heat source is estim-
ated by

q̇ = 1

ωh
(ks(T− − Tf) − kl(Tf − T+)). (14)

Here, Tf is the temperature at the front, given by Eq. (4). We have also experimented with
higher order approximations, where we find two points on either side, a distance ω∗h and
2∗ω∗h from the front, and fit a quadratic polynomial to estimate the gradient at the front.
However, the results from using a linear fit were found to be in a better agreement with

FIG. 2. The fixed and the moving grid with points used to calculate the normal temperature gradient across
the front for one point on the moving grid.
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the exact solutions, as shown in the validation section. The curvature, needed in Eq. 4, is
found by fitting two-third order polynomials through each point and taking the average of
the two values calculated from these polynomials. One polynomial is fitted using two points
from one side and one from the other side. The other polynomial is found by switching the
sides with two and one point. Once the heat source is found, the location of the interface is
updated by integrating Eq. (3) using a second-order, predictor–corrector method. The heat
source found by Eq. (4) is distributed onto the fixed grid by Peskin’s cosine function [26].

The indicator function φ is constructed from the front location by distributing the jump
in φ onto the fixed grid and integrating it by solving a Poisson equation. This results in
a field that has the correct values in the solid and the liquid and a smooth transition zone
across the front. The width depends on the function used to distribute the jump onto the
grid. In the computations presented here, we use Peskin’s cosine function, which results in
a zone about five mesh-spacings wide.

The main challenge in solving the momentum equations is the enforcement of a zero
velocity in the solid. As discussed in the Introduction, several authors have represented solid
boundaries on fixed grids by finding the forces needed to hold them in place. Generally, it
is necessary to use an iterative method to find the force. However, it has recently become
clear that the computations can be simplified with minimal loss of accuracy (see Fadlun
et al. [20] for example) by simply setting the velocity in the solid to zero (if the solid is
stationary). This can be accomplished by a slight modification of the standard projection
scheme. First we split the Navier–Stokes equations in the usual way and then multiply the
unprojected velocity, u∗, and the pressure gradient by φ to set the velocity in the solid to
zero:

u∗ = φ(un + �t A(un)), (15)

un+1 = u∗ − �t φ∇ P. (16)

Here, A is the discrete advection and diffusion term in the Navier–Stokes equations. The
new velocity field should be divergence free,

∇ · un+1 = 0, (17)

and to see whether this is satisfied we note first that Eq. (15) is equivalent to

un+1 = φ(u∗∗), (18)

where u∗∗ = u∗ − �t∇ P . Expanding the divergence yields

∇ · un+1 = ∇ · φu∗∗ = φ∇ · u∗∗ + u∗∗ · ∇φ = 0. (19)

Generally, the normal velocity at the phase boundary is small and the last term can be
ignored. It is therefore usually sufficient to solve only

∇ · u∗∗ = 0. (20)

This approximation makes the computations essentially identical to standard projection
methods without any solid region. If u∗∗ · ∇φ is not small, an iteration would be necessary.
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We have also found that instead of using the index function φ directly, using φ2 helps
keep the phase boundary sharper. This is similar to the use of nonsymmetric weighting by
Beckermann et al. [12]. A test of how well this approach works for a well-defined geometry
is presented in the validation section of this paper.

As the topology of the phase boundary changes, it is necessary to add and delete points
to maintain a smooth representation of the front. To do this, we monitor the separation
between the points and add or delete points if the separation exceeds specified maximum
or minimum values, respectively. To keep the front smooth, the location of new points is
determined by fitting a cubic polynomial through the old points. Generally, the results are
insensitive to the spacing of the front points, as long as there is one or more front points in
each mesh block.

4. VALIDATION

To validate and check the code, we have conducted a number of tests. The solidification
part has been checked separately by comparing the numerical results to analytical solutions
for a two-dimensional Stefan problem and the flow solver is validated through a comparison
with analytical solutions for Stokes flow through a square array of parallel cylinders. The
convergence of the method is tested by grid refinement studies and results for growth without
flow are compared with a solution obtained by a boundary integral method that represents
an essentially exact solution for two-dimensional growth.

The solution for the Stefan problem is given by Carslaw and Jaeger [27]. For the solid-
ification of an infinitely long cylinder with a heat sink in the center, the nondimensional
temperature in the liquid phase is given by

T (r, t) = St

[
1 − Ei

(− αsr2

4αlt

)
Ei

(− αsλ2

αl

)
]
. (21)

In the solid phase the solution is

T (r, t) = QL

4π

[
Ei

(−r2

4t

)
− Ei(−λ2)

]
. (22)

The radius of the solid cylinder is given by

Rf(t) = 2λt0.5, (23)

where λ is the root of

QL = 4πeλ2

[ −St kleαsλ
2/αl

ks Ei(−αsλ2/αl)
+ λ2

]
. (24)

The heat sink, QL, is modeled numerically by fixing the cylinder center in the center of
a mesh block and keeping the temperature of the four corner points equal to the exact
temperature. In Fig. 3a, where St = 1, QL = 10, and kl/ks = cl/cs = 1, the exact and the
average numerical radius calculated by averaging the radius of all front points of the interface
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FIG. 3. Numerical and analytical results for the Stefan problem for the solidification of an infinitely long
cylinder with a heat sink in the center. (a) With St = 1, QL = 10, and kl/ks = cl/cs = 1, the radius of the interface
for different grid resolutions and compared to the exact solution. (b) With St = 1, QL = 50, kl/ks = 0.2, and
cl/cs = 1, the numerical and the exact temperature profiles at the centerline of the domain at different time
steps.

is shown for different grid resolutions. The numerical results are in a very good agreement
with the exact solution and the error decreases as finer grids are used. The temperature profile
at the centerline is plotted in Fig. 3b for St = 1, QL = 50, kl/ks = 0.2, and cl/cs = 1. The
result demonstrates the ability of the method to predict the temperature profile and to capture
the jump in the temperature gradient across the interface.

To test the accuracy of the flow solver and the way solid boundaries are included, Stokes
flow over a square arrays of parallel cylinders was simulated for different void fractions and
the results compared to the analytical solutions of Drummond and Tahir [28] and Sangani
and Acrivos [29]. The simulations were done for a large range of void fractions, but it should
be noted that the analytical solutions are only valid for low void fractions. Figure 4 shows
the flow field around a cylinder for void fraction equal to 0.12566. Here, all boundaries
are periodic and the flow is driven by an imposed pressure gradient. Figure 5 shows the
numerical results and the analytical solutions for the nondimensionalized mean velocity as
a function of the void fraction. The numerical results are obtained using two grid resolutions
and both show a very good agreement with the analytical solutions, in the region where
the analytical solutions are valid. The numerical results do, in particular, converge on the
analytical solutions as the grid resolution is refined.

Solutions using a boundary integral method provide another means for validating the
numerical results. Such simulations can be made very accurate and give essentially exact
solutions for two-dimensional growth. We compare our results for the growth without flow
with the boundary integral solution reported by Karma and Rappel [23]. In this simulation
St = −0.55, the inverse kinetic mobility is zero, and As = 0.75. A 7702 grid is used to
resolve a domain that is 2161.1512 nondimensional length units. The tip velocity reported
by Karma and Rappel for the boundary integral method solution is 0.017. This problem
was used to select the parameter ω in Eq. (12), to study the effect of using either linear or
quadratic fit for the temperature near the interface when calculating the heat source, and to
study the effect of using either Peskin’s cosine interpolation function or the area-weighing
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FIG. 4. The flow field around a cylinder of radius 0.2, which corresponds to a void fraction of 0.12566. All
boundaries are periodic and the flow is driven by an imposed pressure gradient.

function in interpolating the temperature and in distributing the heat source found in Eq. (14).
The parameter ω was varied between 0.6 and 1.6 for both linear and quadratic temperature
profiles near the interface using different combinations for the interpolating functions. The
linear temperature profile generally provided better results and was therefore chosen for
the rest of the computations. The slight superiority of the linear profile is perhaps a little
surprising and while we have not conducted a systematic study to determine the exact
reason, we suspect that the reason is the smoothing of the interface and that we select the
point that we use to compute the gradient as close to the interface as possible to avoid
interference from other parts of the dendrite. If the temperature at this point is a little too
low, then the quadratic fit will overestimate the gradient. The linear fit gives a slightly lower
value (and hence is more correct in the sharp interface limit). Using three values of the
parameter ω, 1.0, 1.2, and 1.4, the growth direction was rotated 45◦ to determine the effect
of grid anisotropy on the results. The tip velocities from these tests were between 0.0164 and
0.0180. Table I shows the tip velocity obtained from these tests. The value of 1.2 was chosen
because it agrees with the exact solution and is insensitive to the choice of the interpolating
functions and the growth direction. The Peskin’s cosine interpolation function was selected
to distribute the heat source and the area-weighing function was selected to interpolate the
temperatures for Eq. (14).

Since there are no theoretical results for the growth of a dendrite in a flow, a grid resolution
test is presented to show how the results converge. The test was carried out using four grids,
of 1282, 2562, 5122, and 10242 grid points, in a domain of (25.6 × 103)2 nondimensional
length units. The nondimensional parameters are St = −0.3, Pr = 0.1, Pef = 0.004, zero
inverse kinetic mobility, and an anisotropy of 40% of the surface tension. The computations
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TABLE I

Results for the Dendrite Arm Tip Velocity for the Test Conducted to Select the Parameter ω

Angle θo ω = 1.0 ω = 1.2 ω = 1.4

Using the Peskins cosine interpolation 0◦ 0.018 0.0171 0.0165
function for interpolating the temperatures 45◦ 0.0181 0.0170 0.0167
and distributing the heat sources

Using the Peskins cosine interpolation 0◦ 0.0174 0.0170 0.0166
function for interpolating the temperatures 45◦ 0.0175 0.0170 0.0165
while using the area-weighing function
for distributing the heat sources

Using the area-weighing function for 0◦ 0.0176 0.0170 0.0165
interpolating the temperatures while 45◦ 0.0179 0.0170 0.0163
using the Peskins cosine interpolation
function for distributing the heat sources

Using the area-weighing function for 0◦ 0.0175 0.0170 0.0168
interpolating the temperatures and 45◦ 0.0171 0.0169 0.0164
distributing the heat sources

Note. The parameters used in these simulations are St = −0.55, As = 0.75, zero inverse kinetic mobility, and
equal material properties. A linear temperature profile was used to compute the heat sources at the interface. The
tip velocity obtained from the boundary integral solution is equal to 0.0170.

FIG. 5. Nnumerical results and the analytical solutions for the nondimensionalized mean velocity as a function
of the void fraction. Two numerical results are shown using two grid resolutions and both show a very good
agreement with the analytical solutions, in the region where the analytical solutions are valid. The numerical
results converge to the analytical solution as the grid is refined. The analytical solutions “A” and “B” are obtained
from Refs. [28, 29], respectively.
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FIG. 6. Grid resolution test performed with the following parameter: St = −0.3, Pr = 0.1, Pe = 0.004, zero
inverse kinetic mobility, and an anisotropy of 40% of the surface tension. (a–d) The interface and the velocity
fields at a nondimensional time about 2.1 × 106 for the four grid resolutions used: 1282, 2562, 5122, and 10242

grid points, respectively. The axis ranges are multiplied by 10−3.

were started with a solid phase with a temperature equal to 0, surrounded by undercooled
liquid metal. The initial solid radius is 500, with a fourfold perturbation in the interface shape
of the type cos(4θ ). Figure 6 shows the interface and the velocities at a nondimensional time
of about 2.1 × 106 for the four grid resolutions. While the result obtained using the first grid,
1282, shows different behavior, the solutions from the three finer grids are almost identical.
Figure 7 shows the tips velocities for the four grids. To make the figure more readable,
the tip velocities of the arm growing perpendicular to the flow and the arms growing in
the downstream direction are not shown for the two coarsest grids. The figure shows that
when going from the 1282 grid to the 2562 grid the upstream tip velocity increased by about
50%, whereas the tip velocity only increased by about 12% between the 2562 grid and the
5122 grid. The upstream tip velocity obtained using the 10242 grid is essentially the same as
for the 5122 grid. These two finest grids also produce the same results for the downstream
tip velocity and the velocity of the tip of the arms perpendicular to the flow.
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FIG. 7. Dendrite arms tip velocities from the grid resolution test presented in Fig. 6.

5. RESULTS

Three sets of simulations are presented here. The first one is a comparison with the results
of Beckermann et al. The second set is a study of the effect of two different flow velocities
on the dendritic growth. The third set is a study of the effect of the Prandtl number on
the growth of many dendrites growing close to each other. The last example illustrates the
ability of the code to deal with more that one dendrite. The results are compared to the
growth without flow in all cases.

Although dendritic growth is a highly three-dimensional process, two-dimensional simu-
lations are expected to give a reasonably accurate picture of the phenomenon and to capture
various trends as the control parameters are changed. In particular, two-dimensional simula-
tions should capture closely the behavior of the upstream tip, since it grows in an essentially
axisymmetric way. The shortcoming of two-dimensional simulations is expected to be more
obvious for the downstream arm and the arms growing perpendicular to the flow. This is
because the flow in the two-dimensional simulations has to go around the tip of the arm
growing perpendicular to the flow instead of going around its side. This may lead to early
flow separation and a larger downstream wake.

5.1. Comparison with the Results of Beckermann et al.

We start by considering the simulations presented by Beckermann et al. and compare our
results to theirs. The nondimensional parameters used in their simulations are the same as
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FIG. 8. Dendrite arms tip velocities with and without flow. The parameters used in these simulations are
St = −0.55, Pr = 23.1, Pe = 0.03475, As = 0.75, zero inverse kinetic mobility, and equal material properties.
The tip velocities from our simulations are compared to the steady state upstream arm tip velocity, 0.0244 (dash
line, — — —) and the perpendicular arm tip velocity, 0.0174 (dash–dot line, –·–·) obtained from simulations of
Beckerman et al., and to the boundary integral solution of Karma and Rappel [23] for the velocity of the tip of the
arm without flow, 0.0170 (dotted line, - - -).

the ones used in the comparison with the boundary integral solution. However, a flow field
with Pef = 0.03475 and Pr = 23.1 is added. Figure 8 shows the tips velocities compared to
the tip velocity for growth without flow. The converged velocities for the tip of the upstream
arm and the arm growing perpendicular to the flow are 0.0170 and 0.0244, respectively.
The corresponding velocities from the simulations by Beckermann et al. are 0.0174 and
0.0244, respectively. The tip velocity of the downstream arm has not reached a steady state
by the end of the simulation and keeps decreasing. This is also observed in the simulations
of Beckermann et al. For the no-flow case Beckermann et al. found the tip velocity to be
0.0174. Table II shows the tip radii for growth with and without flow. For growth without

TABLE II

Average Tip Radii Calculated by Taking the Mean Values

of Tip Radii from Time Equal to 1.4–2.1 × 104

Upstream Downstream Perpendicular
Pe tip radius tip radius tip radius

0 7.0
0.03475 6.3 7.5 7.4

Note. The parameters used in these simulations are St = −0.55,
Pr = 23.1, Pe = 0.03475, As = 0.75, zero inverse kinetic mobility,
and equal material properties.
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flow the value found here, 7.0, is in agreement with the value reported by Beckermann et al.,
6.88. However, the trend observed for the effect of flow on tip radii is quite different. In our
simulation the upstream tip radius is lower than the tip radius without flow, whereas in the
simulations presented by Beckermann et al. the upstream tip radius is found to be higher
than the tip radius without flow. Experimental results show that the upstream tip radius
decreases when flow is introduced [30], which is in agreement with our results.

5.2. Peclet Number Effect

To study the effect of different flow velocities on the growth of a single dendrite we use the
following parameters: St = −0.35, As = 0.4, Pr = 0.1, zero inverse kinetic mobility, and
equal material properties. The two flow Peclet numbers are Pef = 0.001 and 0.002. The first
Peclet number is equal to the local Peclet number based on the propagation velocity of the tip
of the dendrite arm for growth without flow. These parameters do not correspond directly
to any specific material and were selected in part to make the computations reasonably
fast. The relatively high Stefan number was selected to delay the effect of the boundary
condition and allow us to use a relatively small computational domain. The properties are,
however, within the range of real material properties. For example, the Prandtl number
for succinonitrile is 23.1 and for lead it is 0.027. In Fig. 9 we show the dendrite and the
temperature contours around the dendrite at a nondimensional time equal to 3.15 × 106 for
zero flow. The isotherms are shown for temperatures equal to −0.1, −0.15, −0.2, −0.25,
−0.3, and −0.3465. The outer contour, −0.3465, represents the thermal boundary layer

FIG. 9. Temperature contours around a dendrite at a nondimensional time equal to 3.15 × 106 for zero flow.
The parameters used are St = −0.35, Pr = 0.1, Pe = 0.0 (no flow), As = 0.4, zero inverse kinetic mobility, and
equal material properties. The contour lines represent isotherms for temperatures equal to −0.1, −0.15, −0.2,
−0.25, −0.3, and −0.3465. The outer contour, −0.3465, represents the thermal boundary layer defined as 99%
of the undercooling.
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defined as 99% of the undercooling. The dendrite grows symmetrically in the four preferred
directions of growth and the temperature field is also symmetric.

For an inlet flow with Pef = 0.001, the frames in the left column of Fig. 10 show the
temperature contours around a growing dendrite. Starting from the top of the figure, the non-
dimensional times are 3.15, 5.85, and 12.45 × 106. The temperature contour values are the
same as in Fig. 9. The right column of Fig. 10 shows the velocity field around the dendrite at
the same times. The effect of the flow on the temperature in the melt is shown clearly in these
figures. Unlike the case of growth without flow, the temperature contours are not symmetric
in all four directions. The flow compresses the thermal boundary layer near the tip of the
arm growing in the upstream direction while expanding it on the downstream side. The
thermal boundary layer thickness near the tip of the dendrite arm perpendicular to the flow
is not affected much by the flow. As a result of the smaller thermal boundary layer thickness
near the tip of the upstream arm, and therefore higher temperature gradient, its growth rate
is increased. The growth rate of the downstream arm, on the other hand, is reduced because
of the lower temperature gradient there. The perpendicular arm is shifted slightly toward the
flow direction with no significant effect on its growth rate. The higher temperature gradient
on the upstream side also promotes the growth of side branches while on the downstream
side the lower temperature gradient provides more homogeneous temperature that inhibits
the growth of side branches. Separation of flow on the downstream side is seen in the last
frame. This might indicate that two-dimensional effects are starting to be significant, as
discussed previously.

In Fig. 11 the inlet flow strength has been increased to Pef = 0.002. The frames in the
left column of Fig. 11 show the temperature contours around a growing dendrite. Starting
from the top of the figure, these contours are at nondimensional times of 3.15, 5.85, and
12.45 × 106. The isotherms are the same as in Fig. 9, with the outer contour representing
the edges of the thermal boundary layer. The frames in the right column of Fig. 11 show the
velocity field around the dendrite at the corresponding times. The upstream arm now grows
faster and the flow separation on the downstream side starts earlier. This large wake has a
significant effect on the temperature profile, as seen in the bottom frame. As the wake grows,
the fluid starts to flow toward the tip of the downstream arm, resulting in an increase in the
temperature gradient near the tip. On the upstream side, more and larger side branches are
formed and the arm growing perpendicular to the flow is shifted more toward the incoming
flow.

Figure 12 shows the velocities, represented as Peclet numbers, of the tips of the dendrites
for the three simulations discussed above. With a flow Peclet number of 0.001 the upstream
tip velocity is increased by about 70% compared to the no-flow case while the downstream
tip velocity is reduced by about 65%. The tip velocity of the arm growing perpendicular to
the flow is initially equal to the tip velocity for the no-flow case but then starts to decrease. A
number of factors affect the tip velocity of this arm. As the upstream arm grows, more heat is
released from the upstream side. This heat has to be carried by the flow around the tip of the
perpendicular arm, which reduces the temperature gradient there. The backflow generated
by the wake has a similar effect, but for the downstream side of the dendrite. In addition,
there is an effect of the increasing difference between the actual growth direction of the
tip, tilted toward the flow, and the preferred growth direction imposed by the anisotropy of
the surface tension. With increased inlet velocity, the effect of flow on the tip velocities is
stronger. The upstream tip velocity is increased by about 110% for Pef = 0.002 compared
to the no-flow case. The higher upstream tip velocity, the larger wake on the downstream
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FIG. 10. Temperature and velocity fields around a dendrite at nondimensional times of 3.15, 5.85, and
12.45 × 106 (top, middle, and bottom, respectively). The parameters used are St = −0.35, Pr = 0.1, Pe = 0.001,
As = 0.4, zero inverse kinetic mobility, and equal material properties. The contour lines represent the same
isotherms for temperature as used in Fig. 9. In the figure the axis values are multiplied by 10−3.
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FIG. 11. Temperature and velocity fields around a dendrite at nondimensional times of 3.15, 5.85, and
12.45 × 106 (top, middle, and bottom, respectively). The parameters used are St = −0.35, Pr = 0.1, Pe = 0.002,
As = 0.4, zero inverse kinetic mobility, and equal material properties. The contour lines represent the same
isotherms for temperature as used in Fig. 9. In the figure the axis values are multiplied by 10−3.
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FIG. 12. The effect of the Peclet number on the dendrite arms tip velocities. The Peclet numbers used in
the simulations are Pe = 0.0, 0.001, and 0.002. The other parameters used in these simulations are St = −0.35,
Pr = 0.1, Pe = 0.0 (no flow), As = 0.4, zero inverse kinetic mobility, and equal material properties.

side, and the increased tilt of the perpendicular arm into the flow results in a larger reduction
of its tip velocity. The growth velocity of the downstream arm increases significantly after
decreasing initially. This is due to the change in the wake structure and the sharpening of the
temperature gradient near the tip of the downstream arm. This was discussed when Fig. 11
was presented.

Table III shows the average radii, the Peclet number, Pet = (VR)tip, and the stabil-
ity parameter, σ ∗ = 2/(VR2)tip, of the dendrite arms tips for Pef = 0, 0.001, and 0.002

TABLE III

Average Tip Radii Calculated by Taking the Mean Values of Tip Radii

from Time Equal to 3–10 × 106

Pe = 0.000 Pe = 0.001 Pe = 0.002

Upstream tip R 95 88 81
Pet 0.09 0.15 0.17
σ ∗ 0.23 0.15 0.16

Downstream tip R 95 125 123
Pet 0.09 0.06 0.07
σ ∗ 0.23 0.27 0.25

Normal tip R 95 95 124
Pet 0.09 0.10 0.10
σ ∗ 0.23 0.23 0.19

Note. The parameters used in these simulations are: St = −0.35, Pr = 0.1, As = 0.4,
zero inverse kinetic mobility, and equal material properties.
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calculated by taking the mean values from time equal to 0.3–10 × 1012. The upstream tip
radius decreases as the inlet flow velocity increases, which is in good agreement with the
trend reported in a number of experiments (see, for example, [30]). With Pef = 0.001,
the tip radius of the arm perpendicular to the flow remains unchanged. However, with
Pef = 0.002 this tip radius increases due to the strong effect of the flow on the growth of
the perpendicular arm, as discussed for Fig. 12. The Peclet number of the upstream arm
tip increases with increasing melt velocity, which is the trend seen in the experiments of
Lee et al. [30] and predicted by the theory of Bouissou and Pelece [31]. The Peclet num-
ber of the arm perpendicular to the flow is essentially constant even for Pef = 0.002. The
downstream Peclet number decreases as the flow is introduced. The stability parameter σ ∗

of the upstream arm tip decreases due to the flow, as was also observed by Beckermann
et al. However, increasing the flow further does not affect σ ∗. The experiments of Yee
et al. show that for high undercooling, which is the case in our simulation, σ ∗ becomes
independent of the upstream flow velocity. For low undercooling, their results shows that
σ ∗ increases as the upstream flow increases. The value of σ ∗ for the perpendicular tip with
Pef = 0.0001 is similar to its value with no flow. This is consistent with the experiments
of Bouissou et al. [32], which show that perpendicular component of the flow does not
affect the stability parameter σ ∗. The decrease of σ ∗ for the arms growing perpendicular
to the flow for Pef = 0.0002 is likely to be a result of the increased mismatch between
the preferred growth direction due to anisotropy and the upstream tilt due to the oncoming
flow.

Figures 13 and 14 show the void fraction and the rate of heat release, respectively, as a
function of time for Pef = 0.0, 0.001, and 0.002. As expected, larger inlet velocity leads to a

FIG. 13. The effect of Peclet number on the void fraction. The Peclet numbers used in the simulations are
Pe = 0.0, 0.001, and 0.002. The other parameters used in these simulations are St = −0.35, Pr = 0.1, Pe = 0.0
(no flow), As = 0.4, zero inverse kinetic mobility, and equal material properties.
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FIG. 14. The effect of Peclet number on the total rate of heat released. The Peclet numbers used in the
simulations are Pe = 0.0, 0.001, and 0.002. The other parameters used in these simulations are St = −0.35,
Pr = 0.1, Pe = 0.0 (no flow), As = 0.4, zero inverse kinetic mobility, and equal material properties.

faster growth. A higher Peclet number results in improved heat convection in the melt, more
heat is released from the interface, and the solid, consequently, grows faster. The effect of
the circulating wake for Pef = 0.002 is clear by the significant increase in the rate of heat
release. This increase in the heat release rate coincides with an increase in the downstream
tip velocity, as shown in Fig. 12.

5.3. The Effect of Prandtl Number on the Growth of Many Dendrites

In practical situations, many dendrites usually grow close to each other. The interaction
between the dendrites and between the dendrites and the flow affect the growth. We now
examine the growth of many dendrites by a set of three simulations. Initially, the undercooled
melt is seeded with 13 small solids. The parameters are St = −0.25, As = 0.4, zero inverse
kinetic mobility, and equal material properties. Here we set m = 4 and use random values of
θo resulting in fourfold dendrites with random preferred directions of growth. Simulation A
is for no melt flow. In simulation B, Pef = 0.001 and Pr = 0.1. In simulation C, the Prandtl
number is increased to Pr = 10, keeping Pef = 0.001.

Figure 15 shows the front and the isotherms for simulation A—growth without melt
flow—at time equal to 24 × 106. The contours represent temperature isotherms of −0.02,
−0.06, −0.08, −0.1, −0.15, −0.2, and −0.2475. Here the dotted line is for temperature
−0.02, the dashed–dotted line is for temperature −0.1, and the dashed line is for the thermal
boundary layer with a temperature of −0.2475. The dendrite arms facing away from the
other dendrites grow with similar growth rate and slightly faster than the arms facing the
other dendrites. At the time shown, no side branches have appeared.
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FIG. 15. Temperature contours around 13 dendrites growing close to each other at a nondimensional time
equal to 24 × 106. The parameters used in this simulation are St = −0.25, Pe = 0.0 (no flow), Pr = 0.1, As = 0.4,
zero inverse kinetic mobility, and equal material properties.

Figures 16a and 16b show the temperature and the velocity fields, respectively, around
the dendrites for simulation B at time 26 × 106. The flow results in higher upstream
tip velocities, with the formation of side branches and lower downstream tip velocities
due to the smaller temperature gradient. The growth rate of the dendrite arms located in

FIG. 16. Thirteen dendrites growing close to each other at a nondimensional time equal to 24 × 106.
(a, b) Temperature contours and velocity field, respectively, around the dendrite. The parameters used in this
simulation are St = −0.25, Pe = 0.001, Pr = 0.1, As = 0.4, zero inverse kinetic mobility, and equal material
properties. The axis values are multiplied by 10−3.
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FIG. 17. Thirteen dendrites growing close to each other at a nondimensional time equal to 24 × 106.
(a, b) Temperature contours and velocity field, respectively, around the dendrite. The parameters used in this
simulation are St = −0.25, Pe = 0.001, Pr = 10, As = 0.4, zero inverse kinetic mobility, and equal material
properties. The axis values are multiplied by 10−3.

the inner region and facing the flow direction increases and a few side branches start to
form.

Figure 17 shows the temperature (left) and the velocity fields (right) around the dendrites
for simulation C at time 26 × 106. As a result of the much higher Prandtl number, 100 times

FIG. 18. The effect of Peclet number and Prandtle number on the total rate of heat released. The Peclet and
Prandtl numbers used in the simulations are Pe = 0.0 and 0.001 and Pr = 0.1 and 10. The other parameters used
in these simulations are St = −0.25, As = 0.4, zero inverse kinetic mobility, and equal material properties.
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FIG. 19. The effect of Peclet number and Prandtl number on the void fraction. The Peclet and Prandtl numbers
used in the simulations are Pe = 0.0 and 0.001 and Pr = 0.1 and 10. The other parameters used in these simulations
are St = −0.25, As = 0.4, zero inverse kinetic mobility, and equal material properties.

the one used in simulation B, the flow has less effect on the temperature field. The temper-
ature gradient on the upstream side is lower than the gradient in simulation B, resulting in
a lower increase in the upstream tip velocities and fewer side branches. A similar effect is
noticed in the inner region and for the downstream arms.

Figures 18 and 19 show the total rate of heat released and the solid fraction, respectively,
as function of time for simulations A, B, and C. An increase in the flow rate results in a
higher heat transfer from the interface, resulting in a higher solidification rate. A higher
Prandtl number reduces the effect of the velocity on the heat transfer and the growth rate.
The total rate of heat released increases initially and then starts to decrease. This decrease
shows the effect of the dendrites growing close to each other.

6. CONCLUSIONS

We have presented a two-dimensional front tracking method for the simulation of den-
dritic growth with convection. The simulations showed that introducing melt flow results
in an increase in growth rate of the arm growing into the flow, promoting more side-branch
formation on the upstream side, and tilting the tip of the dendrite arm growing perpendicular
to the flow toward the upstream direction. The flow also results in a reduction of the growth
rate of the downstream arm. However, when the wake structure changes so that the fluid
flows toward the tip, the velocity of this tip starts to increase. When many dendrites grow
close to each other the effect of the flow on each dendrite depends on its position with respect
to the flow direction and its position with respect to the other dendrites. Overall, the flow
results in more heat release, faster growth rate, and more side-branch formation. The effect
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of the flow increases with increasing flow Peclet number and decreasing Prandtl number.
These results are in good agreement with experimental observations, but three-dimensional
simulations are needed for complete quantitative results.

Numerical simulations of the effect of flow on the formation of microstructure is a very
new development. However, progress is rapidly being made. The approach taken here is very
similar to the front tracking computations of Shin and Juric [15], except that they included the
solid region as a high-viscosity fluid whereas we force the velocity in the solid to be exactly
zero. The method also has some similarity to the phase-field simulations of Tonhardt and
Amberg [11] and Beckermann et al. [12], except that here the phase boundary is modeled di-
rectly with marker points. While these simulations are still limited to two-dimensional flows
and relatively simple materials, more-complex three-dimensional simulations are likely to
become commonplace within a few years (Al-Rawahi and Tryggvason [33]).
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